Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.376
Filtrar
1.
Microb Biotechnol ; 17(4): e14459, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588222

RESUMEN

Plastics pollution has become one of the greatest concerns of the 21st century. To date, around 10 billion tons of plastics have been produced almost exclusively from non-renewable sources, and of these, <10% have been recycled. The majority of discarded plastic waste (>70%) is accumulating in landfills or the environment, causing severe impacts to natural ecosystems and human health. Considering how plastics are present in every aspect of our daily lives, it is evident that a transition towards a Circular Economy of plastics is essential to achieve several of the Sustainable Development Goals. In this editorial, we highlight how microbial biotechnology can contribute to this shift, with a special focus on the biological recycling of conventional plastics and the upcycling of plastic-waste feedstocks into new value-added products. Although important hurdles will need to be overcome in this endeavour, recent success stories highlight how interdisciplinary approaches can bring us closer to a bio-based economy for the sustainable management of plastics.


Asunto(s)
Plásticos , Desarrollo Sostenible , Humanos , Ecosistema , Reciclaje , Contaminación Ambiental
2.
Waste Manag ; 180: 115-124, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564912

RESUMEN

In this study, the waste generation at the educational institutes chosen from four different levels (kindergartens, primary, secondary and high schools) in Istanbul was measured on-site and the contents of the waste thrown into the recycling bins were determined to specify capture rates. Separation and weighing processes were performed at 16 spots in high schools, 12 spots in secondary schools, 7 spots in primary schools and 7 spots in kindergartens. A survey was conducted to determine the students' awareness of recycling in these schools. It was revealed that the wastes produced from educational institutes are organics (36.4 %), paper (24 %), plastics (14.4 %), glass (8.1 %), metals (4.8 %) and miscellaneous (12.3 %). The survey results indicate that 93 % of the participants think recycling is important, 71 % of them throw their waste into suitable waste bins and 59 % of them know the location of the recycling bins. At the primary school level, a very high rate of paper waste (92.3 %) was reported in plastic bins while plastic waste collected in these bins remained only 5.7 %. It was also seen that glass waste captured in glass bins and metal waste in metal bins remain very low rates (20.9 % and 29.2 %, respectively) at the secondary school level. At the high school level, it was determined that the most commonly captured wastes in glass, plastics and paper bins are glass (47.5 %), plastic (43.2 %) and paper (32.5 %), respectively. Correlation analyses indicated a high positive correlation (p < 0.05) between particular types of waste.


Asunto(s)
Plásticos , Administración de Residuos , Humanos , Reciclaje , Estudiantes , Instituciones Académicas
3.
Waste Manag ; 180: 96-105, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564915

RESUMEN

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed. In this work, laboratory-scale flotation separation experiments were conducted on two model black mass samples: i) a mixture containing a single cathode (i.e., NMC811) and two anode species (i.e., LTO and graphite), simulating a mixed feedstock prior to hydrometallurgical treatment; and ii) a graphite-TiO2 mixture to reflect the expected products after leaching. The results indicate that graphite can be recovered with > 98 % grade from NMC811-LTO-graphite mixtures. Additionally, it was found that flotation kinetics are dependent on the electrode particle species present in the suspension. In contrast, the flotation of graphite from TiO2 resulted in a low grade product (<96 %) attributed to the significant entrainment of ultrafine TiO2 particles. These results suggest that flotation of graphite should be preferably carried out before hydrometallurgical treatment of black mass.


Asunto(s)
Grafito , Litio , Reciclaje/métodos , Suministros de Energía Eléctrica , Iones
4.
J Environ Manage ; 357: 120774, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38569265

RESUMEN

The booming electric vehicle market has led to an increasing number of end-of-life power batteries. In order to reduce environmental pollution and promote the realization of circular economy, how to fully and effectively recycle the end-of-life power batteries has become an urgent challenge to be solved today. The recycling & remanufacturing center is an extremely important and key facility in the recycling process of used batteries, which ensures that the recycled batteries can be handled in a standardized manner under the conditions of professional facilities. In reality, different adjustment options for existing recycling & remanufacturing centers have a huge impact on the planning of new sites. This paper proposes a mixed-integer linear programming model for the siting problem of battery recycling & remanufacturing centers considering site location-adjustment. The model allows for demolition, renewal, and new construction options in planning for recycling & remanufacturing centers. By adjusting existing sites, this paper provides an efficient allocation of resources under the condition of meeting the demand for recycling of used batteries. Next, under the new model proposed in this paper, the uncertainty of the quantity and capacity of recycled used batteries is considered. By establishing different capacity conditions of batteries under multiple scenarios, a robust model was developed to determine the number and location of recycling & remanufacturing centers, which promotes sustainable development, reduces environmental pollution and effectively copes with the risk of the future quantity of used batteries exceeding expectations. In the final results of the case analysis, our proposed model considering the existing sites adjustment reduces the cost by 3.14% compared to the traditional model, and the average site utilization rate is 15.38% higher than the traditional model. The results show that the model has an effective effect in reducing costs, allocating resources, and improving efficiency, which could provide important support for decision-making in the recycling of used power batteries.


Asunto(s)
Suministros de Energía Eléctrica , Reciclaje , Incertidumbre , Reciclaje/métodos , Contaminación Ambiental , Electricidad
5.
Waste Manag ; 180: 149-161, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569437

RESUMEN

Gold tailings are characterized by low-grade, complex composition, fine embedded particle size, environmental pollution, and large land occupation. This paper describes the mineralogical properties of gold tailings, including chemical composition, phase composition, particle size distribution, and microstructure; summarizes the recycling and utilization of components such as mica, feldspar, and valuable metals in gold tailings; reviews harmless treatment measures for harmful elements in gold tailings; and adumbrated the research progress of gold tailings in the application fields of building materials, ceramics, and glass materials. Based on these discussions, a new technology roadmap that combines multistage magnetic separation and cemented filling is proposed for the clean utilization of all components of gold tailings.


Asunto(s)
Contaminación Ambiental , Oro , Cerámica , Reciclaje , Tamaño de la Partícula
6.
Environ Sci Technol ; 58(15): 6457-6474, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38568682

RESUMEN

The circular economy (CE) aims to decouple the growth of the economy from the consumption of finite resources through strategies, such as eliminating waste, circulating materials in use, and regenerating natural systems. Due to the rapid development of data science (DS), promising progress has been made in the transition toward CE in the past decade. DS offers various methods to achieve accurate predictions, accelerate product sustainable design, prolong asset life, optimize the infrastructure needed to circulate materials, and provide evidence-based insights. Despite the exciting scientific advances in this field, there still lacks a comprehensive review on this topic to summarize past achievements, synthesize knowledge gained, and navigate future research directions. In this paper, we try to summarize how DS accelerated the transition to CE. We conducted a critical review of where and how DS has helped the CE transition with a focus on four areas including (1) characterizing socioeconomic metabolism, (2) reducing unnecessary waste generation by enhancing material efficiency and optimizing product design, (3) extending product lifetime through repair, and (4) facilitating waste reuse and recycling. We also introduced the limitations and challenges in the current applications and discussed opportunities to provide a clear roadmap for future research in this field.


Asunto(s)
Ciencia de los Datos , Administración de Residuos , Reciclaje
7.
PLoS One ; 19(4): e0302176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635601

RESUMEN

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Asunto(s)
Administración de Residuos , Administración de Residuos/métodos , Litio , Residuos Sólidos , Materiales de Construcción , Reciclaje/métodos , Residuos Industriales/análisis
8.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611724

RESUMEN

In this study, oxidized single-walled carbon nanohorns (oxSWCNHs) were prepared using nitric acid oxidation and subsequently combined with 3'6-carboxyfluorescein through charge transfer to prepare fluorescent probes. These oxSWCNHs were used to quench fluorogen signals at short distances and dissociate ssDNA using cryonase enzymes. We established a method for rapidly detecting tetracycline (TC) in complex samples based on the amplification of cryonase enzyme signals. After optimizing the experimental conditions, our method showed a detection limit of 5.05 ng/mL, with good specificity. This method was used to determine the TC content in complex samples, yielding a recovery rate of 90.0-103.3%. This result validated the efficacy of our method in detecting TC content within complex samples.


Asunto(s)
Compuestos Heterocíclicos , Tetraciclina , Antibacterianos , Reciclaje , Carbono , ADN de Cadena Simple
9.
Environ Int ; 186: 108609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579452

RESUMEN

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.


Asunto(s)
Antioxidantes , Polvo , Residuos Electrónicos , Exposición Profesional , Reciclaje , Exposición Profesional/análisis , Humanos , Polvo/análisis , China , Quinonas/análisis , Aminas/análisis
10.
PLoS One ; 19(4): e0294179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630697

RESUMEN

This study investigated the suitability of recycled asphalt pavement and polyethylene wastes as coarse aggregate in asphaltic concrete by evaluating the impact of the use of polyethylene polymer wastes and recycled asphalt pavement composite as aggregates on the physical and mechanical properties of the asphaltic concrete. The physical characteristics of the aggregate and bitumen were determined using relevant parametric tests. Recycled asphalt pavement was used to make asphaltic concrete samples using LDPE at 5%, 10%, 15%, RAP at 5% and HDPE at 5%, 10%, 15%, and a mixture of LDPE + HDPE at 5+5%, 7.5+7.5% and 10+10% RAP at 5% as additives. Marshall Stability test was conducted to assess the mechanical strength of the asphaltic concrete, and the results included information on the aggregate's stability, flow, density, voids filled with bitumen, voids filled with air, and voids in mineral aggregate. In addition, the surface and crystal structure of the aggregates was studied by carrying out a microscopic examination with a Scanning Electron Microscope (SEM) and X-Ray diffraction (XRD). The results obtained from this study demonstrated that RAP, HDPE & LDPE are viable conventional aggregate substitute for asphalt concrete production.


Asunto(s)
Materiales de Construcción , Polietileno , Reciclaje/métodos , Hidrocarburos/química
11.
Proc Natl Acad Sci U S A ; 121(15): e2318425121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557182

RESUMEN

Corrugated packaging for express grew by 90 times to 16.5 Mt y-1 in China, where 81% of recent global express delivery growth occurred. However, the environmental impacts of production, usage, disposal, and recycling of corrugated boxes under the entire supply chain remain unclear. Here, we estimate the magnitudes, drivers, and mitigation potentials of cradle-to-grave life-cycle carbon footprint (CF) and three colors of water footprints (WFs) for corrugated cardboard packaging in China. Over 2007 to 2021, CF, blue and gray WFs per unit package decreased by 45%, 60%, and 84%, respectively, while green WF increased by 23% with growing imports of virgin pulp and China's waste ban. National total CF and WFs were 21 to 102 folded with the scale effects. Only a combination of the supply chain reconstruction, lighter single-piece packaging, and increased recycling rate can possibly reduce the environmental footprints by 24 to 44% by 2035.


Asunto(s)
Carbono , Agua , Huella de Carbono , Reciclaje , China
12.
Can Med Educ J ; 15(1): 95-98, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38528902

Asunto(s)
Reciclaje , Escolaridad
13.
Waste Manag ; 179: 12-21, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38447255

RESUMEN

Sn ash recycling is an industry with positive development prospects, as it provides better-protected resources, promotes sustainable development, and lays a solid foundation for future development. In this study, an innovative vacuum carbothermal reduction-directional condensation process was developed. The thermodynamic analysis results indicated that the initial reaction pressure and temperature for the carbothermal reduction of the system was 1-10 Pa and 998-1063 K, respectively. The saturation vapor pressure, separation coefficient, and condensation temperature of Sn, Pb, and Zn in the reduced products differed significantly, and their separation could be achieved by controlling the volatilization and condensation temperatures. A single-factor experiment investigated the effects of carbon ratio, temperature, and time on the reduction efficiency, direct yield, and recovery rate. The optimal experimental conditions were the ratio of MeO to C of 4:1, temperature of 1373 K, and time of 120 min. Sn, Pb, and Zn products were obtained at different positions. This process shortens the traditional process, reduces the reduction cost of Sn, and enables the implementation of the process, making it environmentally friendly.


Asunto(s)
Plomo , Metales Pesados , Vacio , Reciclaje/métodos , Temperatura , Ceniza del Carbón
14.
Waste Manag ; 179: 66-76, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38461625

RESUMEN

Since Random Access Memory (RAM), one of the main parts of computers contains a remarkable quantity of precious metals, applying flotation at the pre-concentration stage to recycle these metals can result in a more cost-effective, user-friendly, and environmentally friendly process compared to direct chemical methods. While the significance of physical characteristics like particle size and shape in the flotation process is well established, the impact of particle shape in the flotation process utilized in the recycling of end-of-life (EoL) RAMs hasn't yet been thoroughly investigated. To fill this gap, a two-stage coarse flotation approach is used for the selective recovery of plastic and valuable metallic particles for sustainable development. The particle geometry of metallic particles recovered by flotation was characterized by axis measurement on the images by optical microscope that allows us to distinguish particles of different sizes and colors that make up the sample and evaluated in terms of particle size distribution (PSD), elongation (E) and roundness (R) parameters. The results showed that after the plastic fraction is effectively removed, it is possible to produce pre-concentrated products with high metal content (more than 50 % Cu content at the 1st stage and 1800 g/t Au content at the 2nd stage using 900 g/t KAX) in an economical and environmentally friendly way. Thus, it was concluded that the gold and copper metallic particles in the reduced-size EoL RAM cards could be easily floated by attaching them to the air bubble with the help of the collector, thanks to their flat shape.


Asunto(s)
Cobre , Oro , Reciclaje/métodos , Tamaño de la Partícula , Computadores
15.
Waste Manag ; 179: 120-129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38471250

RESUMEN

Traditional cathode recycling methods have become outdated amid growing concerns for high-value output and environmental friendliness in spent Li-ion battery (LIB) recycling. Our study presents a closed-loop approach that involves selective sulfurization roasting, water leaching, and regeneration, efficiently transforming spent ternary Li batteries (i.e., NCM) into high-performance cathode materials. By combining experimental investigations with density functional theory (DFT) calculations, we elucidate the mechanisms within the NCM-C-S roasting system, providing a theoretical foundation for selective sulfidation. Utilizing in situ X-ray diffraction techniques and a series of consecutive experiments, the study meticulously tracks the evolution of regenerating cathode materials that use transition metal sulfides as their primary raw materials. The Li-rich regenerated NCM exhibits exceptional electrochemical performance, including long-term cycling, high-rate capabilities, reversibility, and stability. The closed-loop approach highlights the sustainability and environmental friendliness of this recycling process, with potential applications in other cathode materials, such as LiCoO2 and LiMn2O4. Compared with traditional methods, this short process approach avoids the complexity of leaching, solvent extraction, and reverse extraction, significantly increasing metal utilization and Li recovery rates while reducing pollution and resource waste.


Asunto(s)
Litio , Metales , Suministros de Energía Eléctrica , Electrodos , Reciclaje , Iones
16.
Waste Manag ; 179: 144-153, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38471252

RESUMEN

The treatment and recycling of discarded crystalline silicon photovoltaic modules (c-Si PV modules) has become a research focus, but few research have paid attention to the standardized treatment of c-Si PV module's fluorinated backsheet. Improper management of fluorinated backsheet can pose ecological and human health risks. Therefore, this study presents a novel method for processing the backsheet. The proposed approach entailed the utilization of ethanol (CH3CH2OH) to separate the backsheet from the PV module. Subsequently, the separated backsheet underwent decomposition using an alkaline ethanol (NaOH-CH3CH2OH) solution. Finally, the backsheet was recovered in the form of terephthalic acid (TPA) with a purity of 97.47 %. This recovered TPA can then serve as a valuable raw material for producing new backsheets, fostering a closed-loop material circulation. Experimental results demonstrate that immersing the PV module in a 75 % CH3CH2OH-H2O solution at a temperature of 343 K for 30 min achieved 100 % separation of the backsheet. Furthermore, subjecting the separated backsheet to a 60 min reaction in an NaOH-CH3CH2OH solution with a temperature of 343 K and a NaOH concentration of 1.0 mol/L achieved complete decomposition. The reaction mechanism was analyzed through characterization methods such as SEM/EDS, NMR, FTIR and XRD. This method is efficient, non-toxic organic reagent-free and environmentally friendly, so it holds significant potential for further development in the field of c-Si PV module recycling.


Asunto(s)
Reciclaje , Silicio , Humanos , Silicio/química , Hidróxido de Sodio , Reciclaje/métodos , Temperatura , Etanol
17.
PLoS One ; 19(3): e0298765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551900

RESUMEN

In this study, the variation of shear strength behavior and particle breakage (after shearing), as a function of moisture state and compaction level, is investigated for recycled concrete aggregate blended with recycled clay masonry. Recycled masonry was blended with concrete aggregate in percentages ranging from 0% to 30% by total weight. Tests include; basic engineering characteristics (particle size, modified compaction, hydraulic conductivity, and California Bearing Ratio, CBR) as well as unconsolidated undrained static triaxial testing. In triaxial tests, moisture levels ranged from 60% to 100% of optimum moisture content, but compaction levels ranged from 90% to 98% of maximum dry density. The hydraulic conductivity for blends is approximately 2x10-6 cm/s, which indicates a relatively low hydraulic conductivity. Results show a proportional linear relationship between the shear strength of blends and the level of compaction. Despite this, both apparent cohesion and shear strength exhibited reverse linear trends. As expected, more compaction effort resulted in more particle breakage. Strict control should be performed over the compaction process to achieve the required compaction level which resulting in pavement materials being stiffer.


Asunto(s)
Reciclaje , Resistencia al Corte , Tamaño de la Partícula , Arcilla
18.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38509821

RESUMEN

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Asunto(s)
Compuestos de Amonio , Incrustaciones Biológicas , Porcinos , Animales , Amoníaco/análisis , Aguas Residuales , Incrustaciones Biológicas/prevención & control , Reciclaje
19.
Waste Manag ; 180: 9-22, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503033

RESUMEN

Austria must recycle more packaging materials. Especially for plastic packaging waste, significant increases are necessary to reach the EU recycling targets for 2025 and 2030. In addition to improving separate collection and introducing a deposit system for specific fractions, the share of plastic packaging in mixed municipal solid waste (MSW) could be utilized. In Austria, about 1.8milliontonnes of mixed MSW are generated. This includes about 110,000 t/a of plastic packaging waste. Most of the mixed MSW (94 %) is sent directly or via residues from pre-treatment, such as mechanical-biological treatment or waste sorting, to waste incineration. While materials such as glass and metals can also be recovered from the bottom ash, combustible materials such as plastics must be recovered before incineration. This work aims to evaluate the recovery potential of plastic packaging waste in mixed MSW with automated waste sorting. For this purpose, two of the largest Austrian waste sorting plants, with a total annual throughput of about 280,000 t/a, were investigated. The investigation included regular sampling of selected output streams and sorting analysis. The results show that the theoretical recovery potential of plastic packaging from these two plants is 6,500 t/a on average. An extrapolation to Austria results in a potential of about 83,000 t/a. If losses due to further treatment, such as sorting and recycling, are considered, about 30,000 t/a of recyclate could be returned to plastic production. This would correspond to an increase in plastic packaging recycling rate from 25 % to 35 %.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Residuos Sólidos , Eliminación de Residuos/métodos , Austria , Plásticos , Reciclaje/métodos , Embalaje de Productos
20.
J Environ Manage ; 357: 120713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552520

RESUMEN

With the continuous advancement of urban renewal, the application of recycled aggregates (RA) is a win-win measure to solve the treatment of construction waste and provide the required building materials. However, the existence of a large amount of old adhesive mortar (OAM) makes it difficult for RA to equivalently replace natural aggregates (NA) due to their higher water absorption and crushing index, as well as a lower apparent density. From the published literature on enhancing RA, the most mature and easiest method for construction is physical enhancement technology. Therefore, through a review of recent related researches, this article summarizes and compares the modification effects of mechanical grinding technology, traditional heating and grinding technology, and microwave heating technology on the physical properties of RA, including water absorption, apparent density, and crushing value. The related modification mechanisms were discussed. Additionally, the impacts of different physical enhancement technologies on the environment and economy effects are assessed from the perspectives of carbon emissions and cost required during processing. Based on multi-criteria analysis, microwave heating technology is more efficient and cleaner, which is the most recommended in the future.


Asunto(s)
Residuos Industriales , Reciclaje , Residuos Industriales/análisis , Reciclaje/métodos , Materiales de Construcción , Agua , Rendimiento Físico Funcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...